Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The challenge of optimizing personalized learning pathways to maximize student engagement and minimize task completion time while adhering to prerequisite constraints remains a significant issue in educational technology. This paper applies the Salp Swarm Algorithm (SSA) as a new solution to this problem. Our approach compares SSA against traditional optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The results demonstrate that SSA significantly outperforms these methods, achieving a lower average fitness value of 307.0 compared to 320.0 for GA and 315.0 for PSO. Furthermore, SSA exhibits greater consistency, with a lower standard deviation and superior computational efficiency, as evidenced by faster execution times. The success of SSA is attributed to its balanced approach to exploration and exploitation within the search space. These findings highlight the potential of SSA as an effective tool for optimizing personalized learning experiencesmore » « lessFree, publicly-accessible full text available May 7, 2026
-
Free, publicly-accessible full text available February 2, 2026
-
Free, publicly-accessible full text available February 2, 2026
-
Cloud computing is a concept introduced in the information technology era, with the main components being the grid, distributed, and valuable computing. The cloud is being developed continuously and, naturally, comes up with many challenges, one of which is scheduling. A schedule or timeline is a mechanism used to optimize the time for performing a duty or set of duties. A scheduling process is accountable for choosing the best resources for performing a duty. The main goal of a scheduling algorithm is to improve the efficiency and quality of the service while at the same time ensuring the acceptability and effectiveness of the targets. The task scheduling problem is one of the most important NP-hard issues in the cloud domain and, so far, many techniques have been proposed as solutions, including using genetic algorithms (GAs), particle swarm optimization, (PSO), and ant colony optimization (ACO). To address this problem, in this paper one of the collective intelligence algorithms, called the Salp Swarm Algorithm (SSA), has been expanded, improved, and applied. The performance of the proposed algorithm has been compared with that of GAs, PSO, continuous ACO, and the basic SSA. The results show that our algorithm has generally higher performance than the other algorithms. For example, compared to the basic SSA, the proposed method has an average reduction of approximately 21% in makespan.more » « less
-
This paper presents a work-in-progress on a learning system that will provide robotics students with a personalized learning environment. This addresses both the scarcity of skilled robotics instructors, particularly in community colleges and the expensive demand for training equipment. The study of robotics at the college level represents a wide range of interests, experiences, and aims. This project works to provide students the flexibility to adapt their learning to their own goals and prior experience. We are developing a system to enable robotics instruction through a web-based interface that is compatible with less expensive hardware. Therefore, the free distribution of teaching materials will empower educators. This project has the potential to increase the number of robotics courses offered at both two- and four-year schools and universities. The course materials are being designed with small units and a hierarchical dependency tree in mind; students will be able to customize their course of study based on the robotics skills they have already mastered. We present an evaluation of a five module mini-course in robotics. Students indicated that they had a positive experience with the online content. They also scored the experience highly on relatedness, mastery, and autonomy perspectives, demonstrating strong motivation potential for this approach.more » « less
-
Abstract Recently artificial intelligence (AI) and machine learning (ML) models have demonstrated remarkable progress with applications developed in various domains. It is also increasingly discussed that AI and ML models and applications should be transparent, explainable, and trustworthy. Accordingly, the field of Explainable AI (XAI) is expanding rapidly. XAI holds substantial promise for improving trust and transparency in AI-based systems by explaining how complex models such as the deep neural network (DNN) produces their outcomes. Moreover, many researchers and practitioners consider that using provenance to explain these complex models will help improve transparency in AI-based systems. In this paper, we conduct a systematic literature review of provenance, XAI, and trustworthy AI (TAI) to explain the fundamental concepts and illustrate the potential of using provenance as a medium to help accomplish explainability in AI-based systems. Moreover, we also discuss the patterns of recent developments in this area and offer a vision for research in the near future. We hope this literature review will serve as a starting point for scholars and practitioners interested in learning about essential components of provenance, XAI, and TAI.more » « less
-
Sampling based planning is an important step for long-range navigation for an autonomous vehicle. This work proposes a GPU-accelerated sampling based path planning algorithm which can be used as a global planner in autonomous navigation tasks. A modified version of the generation portion for the Probabilistic Road Map (PRM) algorithm is presented which reorders some steps of the algorithm in order to allow for parallelization and thus can benefit highly from utilization of a GPU. The GPU and CPU algorithms were compared using a simulated navigation environment with graph generation tasks of several different sizes. It was found that the GPU-accelerated version of the PRM algorithm had significant speedup over the CPU version (up to 78×). This results provides promising motivation towards implementation of a real-time autonomous navigation system in the future.more » « less
An official website of the United States government
